Thursday, 4 January 2018

Movendo a série de tempo de suavização média


Previsão por Técnicas de Suavização Este site é uma parte dos objetos de aprendizagem de JavaScript E-Labs para tomada de decisão. Outros JavaScript nesta série são categorizados sob diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. Caixas em branco não são incluídas nos cálculos, mas zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados ​​para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto que em Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 / (n1) OR n (2 - a) / a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) / Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0,40 é frequentemente eficaz. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla consiste na comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou mesmo próximos, ótimos por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é apoiada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes, a fim de obter as previsões de curto prazo necessárias. Moving Average Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Você gosta deste site gratuito Por favor, compartilhe esta página no Google Na prática, a média móvel fornecerá uma boa estimativa da média da série temporal se a média for constante ou mudar lentamente. No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo medirá os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série de tempo usada para ilustração juntamente com a demanda média a partir da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ele aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então ele se torna constante novamente. Os dados são simulados adicionando à média um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o número inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que a qualquer momento, apenas os dados passados ​​são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas juntamente com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas da média móvel para a direita por períodos. Uma conclusão é imediatamente aparente a partir da figura. Para as três estimativas, a média móvel está aquém da tendência linear, com o atraso aumentando com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um tempo específico no valor médio do modelo eo valor médio predito pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e viés do estimador da média são dados nas equações abaixo. As curvas de exemplo não correspondem a essas equações porque o modelo de exemplo não está aumentando continuamente, em vez disso, ele começa como uma constante, muda para uma tendência e, em seguida, torna-se constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada deslocando as curvas para a direita. O atraso e o viés aumentam proporcionalmente. As equações abaixo indicam o atraso e o viés de um período de previsão para o futuro quando comparado aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel baseia-se no pressuposto de uma média constante, eo exemplo tem uma tendência linear na média durante uma parte do período do estudo. Como as séries de tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para tais resultados. Podemos também concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menor. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero ea variância do erro é composta por um termo que é uma função de e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com média constante. Este termo é minimizado fazendo-se o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar a previsão responsiva às mudanças, queremos que m seja o menor possível (1), mas isso aumenta a variância do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de Previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo add-in para os dados da amostra na coluna B. As 10 primeiras observações são indexadas -9 a 0. Em comparação com a tabela acima, os índices de período são deslocados por -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usados ​​para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro de média móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto a partir da média móvel no tempo 0 é 11.1. O erro é então -5.1. O desvio padrão e o Desvio Médio Médio (MAD) são calculados nas células E6 e E7 respectivamente. Os dados de suavização removem a variação aleatória e mostram as tendências e os componentes cíclicos Inerente na recolha de dados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Ele / ela toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma maneira de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados do MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra forma de calcular a média é adicionando cada valor dividido pelo número de valores, ou 3/3 4/3 5/3 1 1.3333 1.6667 4. O multiplicador 1/3 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. O (esquerda (frac direito)) são os pesos e, claro, eles somam a 1.5.2 Smoothing Time Series Smoothing é geralmente feito para nos ajudar a ver melhor os padrões, as tendências, por exemplo, em séries temporais. Geralmente suavizar a irregularidade irregular para ver um sinal mais claro. Para os dados sazonais, podemos suavizar a sazonalidade para que possamos identificar a tendência. Suavização não nos fornece um modelo, mas pode ser um bom primeiro passo para descrever vários componentes da série. O termo filtro às vezes é usado para descrever um procedimento de suavização. Por exemplo, se o valor suavizado de um determinado tempo é calculado como uma combinação linear de observações para tempos circundantes, pode-se dizer que weve aplicado um filtro linear para os dados (não o mesmo que dizer o resultado é uma linha reta, por o caminho). O uso tradicional do termo média móvel é que em cada ponto no tempo determinamos médias (possivelmente ponderadas) dos valores observados que circundam um determinado tempo. Por exemplo, no instante t. Uma média móvel centrada do comprimento 3 com pesos iguais seria a média dos valores às vezes t -1. T. E t1. Para tirar a sazonalidade de uma série, para que possamos ver melhor a tendência, usaríamos uma média móvel com um período sazonal span. Assim, na série suavizada, cada valor alisado foi calculado em média em todas as estações. Isso pode ser feito olhando para uma média móvel unilateral em que você média todos os valores para os anos anteriores de dados ou uma média móvel centrada na qual você usa valores antes e depois da hora atual. Para dados trimestrais, por exemplo, poderíamos definir um valor suavizado para o tempo t como (x t x t-1 x t-2 x t-3) / 4, a média deste tempo e os 3 trimestres anteriores. No código R, este será um filtro unilateral. Uma média móvel centrada cria um pouco de uma dificuldade quando temos um número par de períodos de tempo no período sazonal (como costumamos fazer). Para suavizar a sazonalidade nos dados trimestrais. A fim de identificar a tendência, a convenção usual é usar a média móvel alisada no tempo t é Para suavizar a sazonalidade em dados mensais. Para identificar a tendência, a convenção usual é usar a média móvel alisada no instante t. Isto é, aplicamos o peso 1/24 aos valores às vezes t6 e t6 e peso 1/12 a todos os valores em todos os momentos entre t5 e T5. No comando R filtro, bem especificar um filtro de dois lados quando queremos usar valores que vêm antes e depois do tempo para o qual foram suavização. Observe que na página 71 de nosso livro, os autores aplicam pesos iguais em uma média móvel sazonal centrada. Thats ok também. Por exemplo, um trimestral mais suave pode ser suavizado no momento t é fraccionado x frac x frac x frac x frac x Um mensal mais suave pode aplicar um peso de 1/13 a todos os valores de tempos t-6 a t6. O código que os autores usam na página 72 tira vantagem de um comando rep que repete um valor um certo número de vezes. Eles não usam o parâmetro filter dentro do comando filter. Exemplo 1 Produção Trimestral de Cerveja na Austrália Tanto na Lição 1 quanto na Lição 4, analisamos uma série de produção trimestral de cerveja na Austrália. O código R seguinte cria uma série suavizada que nos permite ver o padrão de tendência e traça esse padrão de tendência no mesmo gráfico da série de tempo. O segundo comando cria e armazena a série suavizada no objeto chamado trendpattern. Note que dentro do comando filter, o parâmetro named filter dá os coeficientes para o nosso alisamento e sides 2 faz com que um centrado suave seja calculado. Beerprod (beerprod. dat) filtro de tendência (beerprod, filtro c (1/8, 1/4, 1/4, 1/4, 1/8), sides2) parcela (beerprod, tipo b, ) Linhas (trendpattern) Heres o resultado: Podemos subtrair o padrão de tendência dos valores de dados para ter uma melhor visão da sazonalidade. O resultado segue: Outra possibilidade para a série de alisamento para ver a tendência é o filtro one-sided do filtro trendpattern2 (beerprod, filtro c (1/4, 1/4, 1/4, 1/4), sides1) Com isso, o valor suavizado é a média do ano passado. Exemplo 2. Desemprego mensal nos Estados Unidos Na lição de casa da semana 4 você analisou uma série mensal de desemprego nos Estados Unidos para 1948-1978. Heres um alisamento feito para olhar para a tendência. Trendunemployfilter (unemploy, filterc (1 / 24,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12, (Trendunemploy, mainTrend no desemprego nos Estados Unidos, 1948-1978, ano xlab) Apenas a tendência alisada é plotada. O segundo comando identifica as características de tempo do calendário da série. Isso faz com que a trama tenha um eixo mais significativo. A trama segue. Para séries não-sazonais, você arent obrigado a alisar sobre qualquer extensão particular. Para alisar você deve experimentar com médias móveis de diferentes extensões. Esses períodos de tempo podem ser relativamente curtos. O objetivo é derrubar as bordas ásperas para ver qual tendência ou padrão pode estar lá. Outros Métodos de Suavização (Seção 2.4) A Seção 2.4 descreve várias alternativas sofisticadas e úteis para o alisamento médio móvel. Os detalhes podem parecer esboçado, mas isso é bom porque não queremos ficar atolados em muitos detalhes para esses métodos. Dos métodos alternativos descritos na Seção 2.4, o lowess (regressão localmente ponderada) pode ser o mais utilizado. Exemplo 2 Continua O gráfico seguinte é uma linha de tendência suavizada para a série de Desemprego dos EUA, encontrada utilizando um lowess mais suave, no qual uma quantidade substancial (2/3) contribuiu para cada estimativa suavizada. Note que isso suavizou a série mais agressivamente do que a média móvel. Os comandos utilizados foram os desempregados (desemprego, início c (1948,1), freq12) parcela (lowess (desempregado, f 2/3), suavização Lowess da tendência de desemprego nos EUA) Suavização Exponencial Única A equação básica de previsão para suavização exponencial única (1-alfa) hat t text Nós prognosticamos que o valor de x no tempo t1 seja uma combinação ponderada do valor observado no tempo t eo valor previsto no instante t. Embora o método seja chamado um método de suavização, seu usado principalmente para previsão de curto prazo. O valor de é chamado de constante de suavização. Por qualquer razão, 0.2 é uma popular escolha padrão de programas. Isso coloca um peso de 0,2 na observação mais recente e um peso de 1,2,8 na previsão mais recente. Com um valor relativamente pequeno de, o alisamento será relativamente mais extenso. Com um valor relativamente grande de, o alisamento é relativamente menos extenso à medida que mais peso será colocado no valor observado. Este é um método simples de previsão de um passo à frente que, à primeira vista, parece não exigir um modelo para os dados. De fato, este método é equivalente ao uso de um modelo ARIMA (0,1,1) sem constante. O procedimento ideal é ajustar um modelo ARIMA (0,1,1) ao conjunto de dados observado e usar os resultados para determinar o valor de. Isso é ótimo no sentido de criar o melhor para os dados já observados. Embora o objetivo seja suavizar e um passo à frente previsões, a equivalência ao modelo ARIMA (0,1,1) traz um bom ponto. Não devemos cegamente aplicar alisamento exponencial porque o processo subjacente pode não ser bem modelado por um ARIMA (0,1,1). Considere um ARIMA (0,1,1) com média 0 para as primeiras diferenças, xt - x t-1: begin hat amp amp xt theta1 wt amp amp xt theta1 (xt - que t) amp amp (1 theta1) xt - theta1hat tendem. Se deixarmos (1 1) e assim - (1) 1, vemos a equivalência à equação (1) acima. Por que o Método é Chamado Suavização Exponencial Isso produz o seguinte: começo chapéu amplificador amp alfa xt (1-alfa) alfa x (1-alfa) chapéu amp amp alfa xt alfa (1-alfa) x (1-alfa) 2hat fim Continuar Desta forma substituindo sucessivamente o valor previsto no lado direito da equação. Isto leva a: hat alfa xt alfa (1-alfa) x alfa (1-alfa) 2 x dots alfa (1-alfa) jx pontos alfa (1-alfa) x1 texto A equação 2 mostra que o valor previsto é uma média ponderada De todos os valores passados ​​da série, com pesos exponencialmente variáveis ​​à medida que nos movemos de volta na série. Optimal Exponential Smoothing in R Basicamente, basta ajustar um ARIMA (0,1,1) aos dados e determinar o coeficiente. Podemos examinar o ajuste do bom, comparando os valores previstos com a série real. A suavização exponencial tende a ser usada mais como uma ferramenta de previsão do que uma verdadeira suavidade, por isso procuramos ver se temos um bom ajuste. Exemplo 3. N 100 observações mensais do logaritmo de um índice de preços do petróleo nos Estados Unidos. A série de dados é: Um ajuste ARIMA (0,1,1) em R deu um coeficiente MA (1) 0,3877. Assim, (1 1) 1,3877 e 1- -0,3877. A equação exponencial de suavização de previsão é 1.3877xt - 0.3877hat t No tempo 100, o valor observado da série é x 100 0,86601. O valor previsto para a série nesse momento é Assim, a previsão para o tempo 101 é o chapéu 1.3877x - 0.3877hat 1.3877 (0.86601) -0.3877 (0.856789) 0.8696 A seguir é o quão bem o mais suave se encaixa a série. É um bom ajuste. Isso é um bom sinal para a previsão, o principal objectivo para este mais suave. Aqui estão os comandos usados ​​para gerar a saída para este exemplo: oilindex scan (oildata. dat) gráfico (oilindex, tipo b, registro principal de índice de óleo série) expsmoothfit arima (oilindex, ordem c (0,1,1)) expsmoothfit Para ver o arima resultados preditos oilindex - expsmoothfitresiduals previu valores gráfico (oilindex, typeb, principal Exponential Suavização de Log of Oil Index) linhas (preditos) 1.3877oilindex100-0.3877predicteds100 previsão de tempo 101 Double suavização exponencial Double exponencial suavização pode ser usado quando theres Tendência (longo ou curto prazo), mas sem sazonalidade. Essencialmente, o método cria uma previsão combinando estimativas exponencialmente suavizadas da tendência (inclinação de uma linha reta) eo nível (basicamente, a intercepção de uma linha reta). Dois pesos diferentes, ou parâmetros de suavização, são usados ​​para atualizar esses dois componentes a cada vez. O nível alisado é mais ou menos equivalente a uma suavização exponencial simples dos valores de dados ea tendência suavizada é mais ou menos equivalente a uma suavização exponencial simples das primeiras diferenças. O procedimento é equivalente à montagem de um modelo ARIMA (0,2,2), sem constante, pode ser realizado com um ajuste ARIMA (0,2,2). (1-B) 2 xt (1teta1B theta2B2) p. Navegação

No comments:

Post a Comment